Генератор постоянного тока: устройство, принцип работы, классификация

Генератор постоянного тока: устройство, принцип работы Интересное

На заре электрификации генератор постоянного тока оставался единственным альтернативным источником электроэнергии. Довольно скоро на смену этим генераторам пришли более совершенные и надежные трехфазные генераторы. В некоторых отраслях промышленности постоянный ток продолжал оставаться популярным, и устройства для его поколения совершенствовались и развивались.

Даже в наше время, когда были изобретены мощные выпрямительные устройства, значение генераторов постоянного тока не потеряло своей актуальности. Они используются, например, для питания линий электропередач в городском электротранспорте, трамваях и троллейбусах. Такие генераторы до сих пор используются в телекоммуникационных технологиях в качестве источников постоянного тока в цепях низкого напряжения.

Устройство и принцип работы

Генератор основан на принципе электромагнитной индукции. Если между полюсами постоянного магнита поместить замкнутый контур, то при его вращении магнитный поток изменится на противоположный (см. Рис. 1). По закону электромагнитной индукции ЭДС индуцируется в момент пересечения. Электродвижущая сила увеличивается по мере приближения проводника к полюсу магнита. Если к коллектору подключить нагрузку R (два желтых полукольца на рисунке), то по созданной цепи будет протекать ток.

Принцип действия генератора постоянного тока 

По мере того, как повороты рамки покидают зону магнитного потока, ЭДС ослабевает и достигает нуля, когда рамка горизонтальна. По мере того как контур продолжает вращаться, противоположные стороны контура меняют свою магнитную полярность: часть кадра, которая была ниже Северного полюса, занимает положение над Южным полюсом.

Значения ЭДС в каждой активной обмотке цепи задаются формулой: e1 = Blvsinwt; e2 = -Blvsinwt; , где B — магнитная индукция, l — длина стороны рамки, v — линейная скорость вращения контура, t — время, t — угол, под которым рамка пересекает магнитный поток.

Когда полюса меняются местами, направление тока меняется. Однако из-за того, что коллектор вращается синхронно с рамой, ток нагрузки всегда направлен в одном направлении. Это означает, что обсуждаемая модель производит электричество непрерывно. Результирующая ЭДС имеет вид: e = 2Blvsinwt, что означает, что ее изменение подчиняется синусоидальному закону.

Строго говоря, такая конструкция обеспечивает только полярность неподвижных щеток, но не устраняет ЭДС пульсации. Поэтому график генерируемого тока такой, как показано на рис.2.

График тока, выработанного примитивным генератором

Такой ток, за исключением редких случаев, непригоден. Нам нужно сгладить неровности до приемлемого уровня. Это достигается за счет увеличения количества полюсов постоянных магнитов, а вместо простого каркаса используется более сложная конструкция — арматура, с большим количеством обмоток и соответствующим количеством коллекторных пластин (см. Рис. 3). Причем обмотки подключаются по-разному, о чем будет сказано ниже.

Ротор генератора

Фурнитура изготовлена ​​из листовой стали. В сердечниках якоря имеются прорези, в которые помещается несколько витков провода, образующих рабочую обмотку ротора. Провода в пазах соединены последовательно с образованием катушек (секций), которые, в свою очередь, образуют замкнутую цепь через пластины коллектора.

С точки зрения физики процесса генерации не имеет значения, вращаются ли обмотки цепи или сам магнит. Поэтому на практике якоря маломощных генераторов изготавливаются из постоянных магнитов, а возникающий переменный ток выпрямляется диодными мостами и другими цепями.

С точки зрения физики процесса генерации не имеет значения, вращаются ли обмотки цепи или сам магнит. Поэтому на практике якоря маломощных генераторов изготавливаются из постоянных магнитов, а возникающий переменный ток выпрямляется диодными мостами и другими цепями.

И наконец: если на коллектор подается постоянное напряжение, генераторы постоянного тока могут работать в режиме синхронного двигателя.

Структура двигателя (он же генератор) очевидна на рисунке 4. Неподвижный статор состоит из двух полюсных сердечников.изготовлены из ферромагнитных пластин и последовательно соединенных обмоток возбуждения. Кисти выровнены друг с другом. Для охлаждения обмоток используется вентилятор.

Двигатель постоянного тока

Классификация

Есть два типа генераторов постоянного тока:

  • независимое возбуждение обмоток;
  • самопробуждение.

Электроэнергия, вырабатываемая самим устройством, используется для самовозбуждения генераторов. По принципу соединения обмоток якоря генераторы с самовозбуждением делятся на следующие типы:

  • Устройства с параллельным возбуждением;
  • генераторы переменного тока с последовательным возбуждением;
  • устройства смешанного типа (комбинированные генераторы).

С параллельным возбуждением

Рассмотрим подробнее особенности каждого типа соединения обмоток якоря.

Для обеспечения нормальной работы электроприборов необходимо стабильное напряжение на выводах генератора, независимо от изменения общей нагрузки. Эта проблема решается регулировкой параметров возбуждения. В генераторах переменного тока с параллельным возбуждением выводы катушки подключаются через регулирующий реостат параллельно обмотке якоря.

Полевые реостаты могут блокировать намотку поля на себя. В противном случае при разрыве цепи возбуждения резко возрастет самоиндукция ЭДС в обмотке, что может привести к разрыву изоляции. В состоянии короткого замыкания энергия рассеивается в виде тепла, предотвращая повреждение генератора.

Электрические машины с параллельным возбуждением не требуют внешнего источника питания. Из-за остаточного магнетизма, всегда присутствующего в сердечнике электромагнита, параллельные обмотки самовозбуждаются. Для увеличения остаточного магнетизма в катушках возбуждения сердечники электромагнитов изготовлены из литой стали.

С независимым возбуждением

Процесс возбуждения продолжается до тех пор, пока ток не достигнет предельного значения и ЭДС не достигнет номинального значения при оптимальной скорости вращения якоря.

Преимущество: генераторы, возбуждаемые параллельно, не подвергаются токам короткого замыкания.

Батареи или другие внешние устройства часто используются в качестве источника питания для обмоток возбуждения. В машинах малой мощности используются постоянные магниты, обеспечивающие наличие основного магнитного потока.

С последовательным возбуждением

У мощных генераторов переменного тока есть возбудитель на валу, который производит постоянный ток, возбуждающий обмотки основного корпуса. Возбуждения достаточно для 1–3% номинального тока якоря и не зависит от тока якоря. Изменчивость ЭДС управляется регулируемым реостатом.

Преимущество независимого возбуждения заключается в том, что ток возбуждения не зависит от напряжения на клеммах. Это обеспечивает хорошие внешние характеристики генератора.

Со смешанным возбуждением

Последовательные обмотки производят ток, равный току генератора. Поскольку на холостом ходу нагрузка равна нулю, возникает нулевое возбуждение. Это означает, что характеристика холостого хода не может быть удалена, т.е. отсутствует характеристика регулирования.

В генераторах переменного тока с последовательным возбуждением практически отсутствует ток, когда ротор работает на холостом ходу. Чтобы инициировать процесс возбуждения, к клеммам генератора необходимо подключить внешнюю нагрузку. Эта четкая зависимость напряжения от нагрузки является недостатком последовательных обмоток. Эти устройства можно использовать только для питания электрических устройств с постоянной нагрузкой.

Конструкции генераторов смешанного возбуждения сочетают в себе полезные свойства. Их характеристики: эти устройства имеют две катушки — основную, включенную параллельно обмотке якоря, и вспомогательную, включенную последовательно. В цепь параллельной обмотки включен реостат для регулирования тока возбуждения.

Технические характеристики генератора постоянного тока

Процесс самовозбуждения генератора переменного тока со смешанным возбуждением аналогичен процессу самовозбуждения генератора переменного тока с параллельными обмотками (из-за отсутствия начального тока последовательная обмотка не участвует в самовозбуждении). Характеристики холостого хода такие же, как у генератора с параллельной обмоткой. Это позволяет регулировать напряжение на клеммах генератора.

  • Смешанное возбуждение сглаживает пульсации напряжения наноминальная нагрузка. Это главное преимущество генератора этого типа перед другими типами генераторов. Недостаток — сложность конструкции, что приводит к удорожанию этих устройств. Такие генераторы также отказоустойчивы.
  • Работа генератора характеризуется соотношением основных величин, которые называются его характеристиками. Основные характеристики:
  • отношения между величинами при работе на холостом ходу;
  • характеристики внешних параметров;
  • нормативные значения.
Внешняя характеристика ГПТ

Некоторые нормативные особенности и зависимости работы без нагрузки частично раскрыты в главе «Классификация». Кратко рассмотрим внешние характеристики, соответствующие работе генератора в номинальном режиме. Внешняя характеристика очень важна, так как показывает зависимость напряжения от нагрузки и снимается при стабильной скорости вращения якоря.

Характеристика ГПТ с параллельным возбуждением

Внешние характеристики генератора постоянного тока Это зависимость напряжения от нагрузки (см. Рис. 5). Как видно из диаграммы, падение напряжения наблюдается, но не сильно зависит от тока нагрузки (при сохранении скорости вращения двигателя якоря).

Внешняя характеристика генератора с последовательным возбуждением

Отношение напряжения к нагрузке более выражено для генераторов переменного тока с параллельным возбуждением (см. Рисунок 6). Это связано с падением тока возбуждения в обмотках. Чем выше ток нагрузки, тем более резким будет падение напряжения на клеммах генератора. В частности, по мере того, как сопротивление постепенно падает до уровня неисправности, напряжение упадет до нуля. Однако резкое короткое замыкание в цепи вызывает реверс генератора и может иметь катастрофические последствия для электрической машины этого типа.

Увеличение тока нагрузки при последовательном возбуждении увеличивает ЭДС. (см. верхнюю кривую на рисунке 7). Однако напряжение (нижняя кривая) отстает от ЭДС, поскольку некоторая энергия теряется на электрические потери из-за вихревых токов.

Обратите внимание, что когда напряжение достигает своего максимума, оно начинает резко падать по мере увеличения нагрузки, хотя кривая ЭДС все еще имеет тенденцию к росту. Такое поведение является недостатком, который ограничивает использование этого типа генератора переменного тока.

В генераторах переменного тока со смешанным возбуждением обе катушки, включенные последовательно и параллельно, имеют встречные соединения. Результирующая намагничивающая сила в случае согласованного возбуждения равна векторной сумме сил намагничивания этих обмоток, а в случае двухтактного возбуждения — разности этих сил.

Внешняя характеристика ГПТ со смешанным возбуждением

В процессе плавного увеличения нагрузки от момента холостого хода до номинального уровня напряжение на выводах будет практически постоянным (кривая 2 на рис. 8). Повышение напряжения наблюдается, когда количество проводов последовательной обмотки превышает количество витков, соответствующее номинальному возбуждению якоря (кривая 1).

Изменение напряжения для случая с меньшим количеством витков в последовательной обмотке показано на кривой 3. Противоположная обмотка показана на кривой 4.

Реакция якоря

Генераторы противотока используются, когда необходимо ограничить токи короткого замыкания, например, в сварочных аппаратах.

В случае нормально возбужденного смешанного типа ток возбуждения постоянен и почти не зависит от нагрузки.

ЭДС

Когда к генератору подключена внешняя нагрузка, токи в обмотках генератора создают собственное магнитное поле. Это создает магнитное сопротивление между полями статора и ротора. Результирующее поле сильнее там, где якорь сталкивается с полюсами магнита, и слабее, когда он убегает от полюсов магнита. Другими словами, якорь магнитно реагирует, пропитывая сталь сердечников катушки. Интенсивность реакции якоря зависит от насыщения катушек. В результате этой реакции щетки на пластинах коллектора начинают сверкать.

Мощность

Отклик якоря можно уменьшить, используя дополнительные магнитные полюса или перемещая щетки за среднюю линию геометрического нейтрального полюса.

КПД

Среднее значение электродвижущей силы пропорционально магнитному потоку, количеству активныхколичество проводников в обмотке и скорость вращения якоря. Увеличивая или уменьшая эти параметры, можно управлять ЭДС и, следовательно, напряжением. Самый простой способ добиться желаемого результата — отрегулировать скорость клапана.

Различают полную мощность и полезную мощность генератора. Полная мощность пропорциональна силе тока при постоянной ЭДС: P = EIa. Полезная мощность, подаваемая в схему, равна P1 = UI.

Применение

Важной особенностью генератора переменного тока является его КПД — отношение полезной мощности к полной мощности. Обозначим это значение символом ηe. Тогда: ηe = P1 / P.

На холостом ходу ηe = 0. Максимальный КПД достигается при номинальных нагрузках. КПД генераторов большой мощности близок к 90%.

До недавнего времени использование генераторов постоянного тока на железнодорожном транспорте не имело альтернативы. Однако процесс замены этих генераторов на трехфазные синхронные устройства уже начался. Синхронный переменный ток генератора выпрямляется с помощью выпрямительных полупроводниковых блоков.

В некоторых российских локомотивах нового поколения уже используются асинхронные двигатели переменного тока.

Оцените статью
Интернет-Клуб Для Автолюбителей